Формула сложного процента с капитализацией в excel

Термин капитализация процентов используется при оформлении вклада и означает, что проценты будут прибавляться к его телу с периодичностью указанной в условиях и в дальнейшем процентная ставка будет начисляться не только на сами денежные средства клиента, но и на начисленный доход. Периодичность причисления процентов ко вкладу может отличаться от банка к банку, но наиболее часто используемые — ежедневно, ежемесячно, ежеквартально, ежегодно.

Альтернативой является условие, когда начисленные проценты перечисляются на счет или карту клиента, и он может воспользоваться деньгами сняв их в банкомате или получив в кассе банка. При условии капитализации доход и полная стоимость по вкладу становится больше. Причем, чем меньше периодичность начисления процентов или больше срок вклада, тем больше разница в доходе между вкладами с капитализацией и без нее.

Доход по вкладу с капитализацией процентов в общем случае можно изобразить следующей формулой:

Д = В х (1 + П)^Т, где

Д — доход по вкладу;

В — сумма вклада;

П — процентная ставка за один период, за который начисляется процент;

Т — количество периодов на которые размещены денежные средства.

Что же касается формул разных периодов начисления, то мы рассмотрим их ниже.

Вклады с ежедневной капитализацией

Такие условия обычно используются в депозитах с небольшими сроками (от нескольких дней до пары месяцев) и в данном случае формула начисления будет выглядеть следующим образом:

Д = В х (1 + П/365)^Т, где

Д — доход по вкладу;

В — сумма вклада;

П — годовая процентная ставка по вкладу;

Т — срок вклада в днях.

Для примера возьмем два одинаковых вклада на сумму 100 000 рублей и процентной ставкой 10% годовых, срок размещения денежных средств — 5 лет. По вкладу без капитализации мы получим доход равный 50 000 рублей, а с капитализацией — 61 051 рублей. Как видно, разница составила более 11 000 рублей. В случае начисления процентов ежеквартально эта разница составит еще больше. Расчеты по примеру представлены ниже в таблице:

день без капитализации с капитализацией
Деньги во вкладе Начисленные
проценты
Деньги во вкладе Начисленные
проценты
1 100 000,00 27,40 100 000,00 27,40
2 100 000,00 27,40 100 027,40 27,40
3 100 000,00 27,40 100 054,80 27,41
4 100 000,00 27,40 100 082,21 27,42
5 100 000,00 27,40 100 109,63 27,43
ИТОГО 137,00 137,06

Как мы видим из примера, небольшая, но все-таки выгода от использования капитализации здесь есть.

Ежемесячная капитализация

В случае ежемесячной капитализации формула расчета будет следующей:

Д = В х (1 + П/12)^Т, где

Д — доход по вкладу;

В — сумма вклада;

П — годовая процентная ставка по вкладу;

Т — срок вклада в месяцах.

Применим эту формулу на предыдущем примере. Расчет вы можете увидеть в таблице ниже:

месяц без капитализации с капитализацией
Деньги во вкладе Начисленные
проценты
Деньги во вкладе Начисленные
проценты
1 100 000,00 833,33 100 000,00 833,33
2 100 000,00 833,33 100 833,33 840,28
3 100 000,00 833,33 101 673,61 847,28
4 100 000,00 833,33 102 520,89 854,34
5 100 000,00 833,33 103 375,23 861,46
ИТОГО 4 166,65 4 236,69

Как видим, в данном случае разница составила уже достаточно ощутимую сумму.

Ежеквартальная капитализация

Формула расчета дохода по вкладу с ежеквартальной капитализацией будет выглядеть следующим образом:

Д = В х (1 + П/4)^Т, где

Д — доход по вкладу;
В — сумма вклада;

П — годовая процентная ставка по вкладу;

Т — срок вклада в кварталах.

Для примера возьмем те же условия по вкладу. Расчеты по примеру представлены ниже в таблице:

квартал без капитализации с капитализацией
Деньги во вкладе Начисленные
проценты
Деньги во вкладе Начисленные
проценты
1 100 000,00 2 500,00 100 000,00 2 500,00
2 100 000,00 2 500,00 102 500,00 2 562,50
3 100 000,00 2 500,00 105 062,50 2 626,56
4 100 000,00 2 500,00 107 689,06 2 692,23
5 100 000,00 2 500,00 110 381,29 2 759,53
ИТОГО 12 500,00 13 140,82

Как мы видим, разница между вкладом с капитализацией и без нее составила уже более одной тысячи рублей.

Ежегодная капитализация

По вкладам с ежегодной капитализацией формула расчета будет выглядеть наиболее просто:

Д = В х (1 + П)^Т, где

Читайте также:  Сделка коммерческого кредита оформляется в основном

Д — доход по вкладу;

В — сумма вклада;

П — годовая процентная ставка по вкладу;

Т — срок вклада в годах.

Для примера возьмем те же условия по вкладу. Расчеты по примеру представлены ниже в таблице:

год без капитализации с капитализацией
Деньги во вкладе Начисленные
проценты
Деньги во вкладе Начисленные
проценты
1 100 000 10 000 100 000 10 000
2 100 000 10 000 110 000 11 000
3 100 000 10 000 121 000 12 100
4 100 000 10 000 133 100 13 310
5 100 000 10 000 146 410 14 641
ИТОГО 50 000 61 051

При этом, за пять лет разница между двумя вкладами составила более 11 000 рублей.

Кроме рассмотренных выше периодов начислений капитализации банки могут предлагать и другие, например, раз в полгода, раз в 10, 20, 100, 200, 400 дней. Здесь условия ограничиваются лишь фантазией банковских работников, отвечающих за депозитные программы.

Плюсы и минусы капитализации

Но при наличии такого плюса как увеличенный доход, у депозитов с капитализацией есть и определенный минус. При перечислении процентов на карту клиент банка может в любой момент воспользоваться полученными деньгами, в то время как при условии капитализации весь доход до последнего дня остается в банке и взять его можно только по окончании депозитного договора.

Расчет капитализации в Excel

На нашем сайте вы можете скачать форму для расчета вклада с капитализацией в Excel. Подставив туда свои данные сможете увидеть свой доход по депозиту. Кроме этого форма позволяет делать расчет с учетом частичного снятия средств и пополнения вклада.

Условие капитализации является достаточно серьезным при выборе вклада, от него зависит какой в итоге доход будет получен, поэтому его обязательно необходимо учитывать. Для сравнения различных вложений вы можете воспользоваться нашей формой подбора, а для расчета дохода по ним — калькулятором. Также на страницах нашего сайта вы можете посмотреть и подобрать себе вклады с ежедневной, ежемесячной, ежеквартальной и ежегодной капитализацией.

Также вы можете почитать в словаре о:

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по простым и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования простых процентов изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов читайте здесь.

Начисление процентов 1 раз в год

Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов:
S = Р*(1+i)^n
где S — наращенная сумма,
i — годовая ставка,
n — срок ссуды в годах,
(1+ i)^n — множитель наращения.

Начисление процентов несколько раз в год

В рассмотренном выше случае капитализация производится 1 раз в год.
При капитализации m раз в год формула наращения для сложных процентов выглядит так:
S = Р*(1+i/m)^(n*m)
i/m – это ставка за период.
На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).

В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.

Рассмотрим задачу: Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.

Способ 1. Вычисление с помощью таблицы с формулами
Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода.
В файле примера это реализовано на листе Постоянная ставка.

За первый период будут начислены проценты в сумме =20000*(15%/12) , т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес.
При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.

Читайте также:  Как при переводе денег указать комментарий сбербанк

Способ 2. Вычисление с помощью формулы Наращенных процентов
Подставим в формулу наращенной суммы S = Р*(1+i )^n значения из задачи.
S = 20000*(1+15%/12)^12
Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации).
Другой вариант записи формулы – через функцию СТЕПЕНЬ()
=20000*СТЕПЕНЬ(1+15%/12; 12)

Способ 3. Вычисление с помощью функции БС().
Функция БС() позволяет определить будущую стоимость инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае аннуитетных платежей. Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.
=-БС(15%/12;12;;20000)

Или так =-БС(15%/12;12;0;20000;0)

Примечание . В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов используется функция БЗРАСПИС() .

Определяем сумму начисленных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i )^n, получим:
I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1)
Результат: 114 351,25р.
Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера ).

Определяем Срок долга

Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится?
Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.

В файле примера приведено решение, ответ 6,12 лет.

Вычисляем ставку сложных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?

В файле примера приведено решение, ответ 14,87%.

Примечание . Об эффективной ставке процентов читайте в этой статье.

Учет (дисконтирование) по сложным процентам

Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.
Рассмотрим 2 вида учета: математический и банковский.

Математический учет. В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i )^n
Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S.
Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S — P называется дисконтом.

Пример. Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых.
Другими словами, известно:
n = 7 лет,
S = 2 000 000 руб.,
i = 15% .

Решение. P = 2000000/(1+15% )^7
Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.

Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1)
Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и рассмотрена здесь.

Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле:
Р = S*(1- dсл )^n
где dcл — сложная годовая учетная ставка.

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Сравнив формулу наращения для сложных процентов S = Р*(1+i )^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл )^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год.

Функция ЭФФЕКТ в Excel предназначена для расчета фактической годовой процентной ставки (иное название – эффективная ставка), на основе известных данных, таких как номинальная годовая ставка, число периодов начисления сложных процентов, и возвращает соответствующее числовое значение.

Примеры использования функции ЭФФЕКТ в Excel

Пример 1. Предприниматель получил ссуду в банковской организации на 1 год с эффективной процентной ставкой 23,5%. Определить значение номинальной ставки, если по условию договора выплаты по кредиту необходимо проводить ежемесячно.

Читайте также:  Перед трудоустройством в сбербанк сколько длится обучение

Исходная таблица данных:

Связь между значениями эффективной и номинальной ставок описывается следующей формулой:

Проверим полученный результат, проведя пересчет эффективной ставки с помощью функции:

  • B4 – полученное выше числовое значение номинальной ставки;
  • B2 – число периодов погашения.

Полученное значение 0,235 соответствует 23,5% (значению эффективной ставки по условию). Расчет номинальной ставки также можно производить с помощью функции НОМИНАЛ.

Формула расчета процентов по вкладу в Excel

Пример 2. Вкладчику предложили сделать депозит в банк под 16% годовых (номинальная ставка), при этом расчете производится с использованием сложных процентов (эффективная ставка). По условиям договора вкладчик сможет снять только полученные проценты. Определить сумму к получению, если размер депозита – 1 млн. рублей, капитализация – ежемесячная.

Формула для расчета:

  • B2 – число периодов капитализации;
  • B3 – номинальная ставка;
  • B4 – сумма вклада.

Для сравнения, доход от вклада при использовании простых процентов составил бы 1000000*0,16=160000 рублей, поэтому для вкладчика выгодно использовать предложенный вариант со сложными процентами.

Как посчитать проценты на депозит в Excel для выбора вклада

Пример 3. Два банка предлагают сделать депозитный вклад на одинаковую сумму (250000 рублей) на 1 год при следующих условиях:

  1. Номинальная ставка – 24%, простые проценты, 12 периодов капитализации.
  2. Номинальная ставка 22%, сложные проценты, начисляемые по итогам каждого периода, 4 периода капитализации.

Определить выгодный вариант, отобразить схему выплат.

В первом случае таблица выплат выглядит так:

Проценты – постоянная величина, рассчитываемая по формуле:

Описание аргументов (для создания абсолютной ссылки используйте клавишу F4):

  • $B$2 – начальная сумма вклада;
  • $B$3 – годовая ставка;
  • $B$4 – число периодов капитализации вклада.

Сумма накопленных средств за каждый период рассчитывается как как сумма средств на счету за прошедший период и процентов, начисленных за текущий период. В итоге первый банк начислит 60000 рублей процентов, и вкладчик сможет забрать 310000 рублей.

Таблица начисления процентов по условиям второго банка:

В данном случае проценты не являются фиксированной величиной и зависят от итоговой суммы накоплений за предыдущий период (поэтому ссылка на ячейку L2 – абсолютная):

При расчете суммы за каждый период к текущему значению необходимо прибавить проценты за предыдущий период.

Для быстрого расчета итоговой суммы используем формулы:

  1. Первый банк:
  2. Второй банк:

Несмотря на то, что второй банк предлагает расчет с использованием сложных процентов, предложение первого банка оказалось выгоднее. Если бы число периодов капитализации совпадало (12), во втором банке вкладчик получил бы 310899,1 рублей, то есть больше денег, несмотря на более низкую номинальную процентную ставку.

Особенности использования функции ЭФФЕКТ в Excel

Функция имеет следующий синтаксис:

  • номинальная_ставка – обязательный аргумент, характеризующий числовое (десятичная дробь) или процентное значение номинальной годовой ставки;
  • кол_пер – обязательный аргумент, характеризующий числовое значения числа периодов за год, на протяжении которых начисляются сложные проценты.
  1. Аргумент кол_пер может принимать дробные числа, значения которых будут усечены до целого числа (в отличие от операции округления, при усечении отбрасывается дробная часть).
  2. Каждый из двух аргументов функции ЭФФЕКТ должен быть представлен числовым (или процентным для аргумента номинальная_ставка) значением либо текстовой строкой, которая может быть преобразована в число. При вводе не преобразуемых к числовым значениям текстовых строк и имен, а также данных логического типа функция ЭФФЕКТ будет возвращать код ошибки #ЗНАЧ!.
  3. Аргумент номинальная_ставка принимает значения из диапазона положительных чисел, а кол_пер – из диапазона от 1 до +∞. Если данные условия не выполняются, например, функции =ЭФФЕКТ(0;12) или =ЭФФЕКТ(12%;0) вернут код ошибки #ЧИСЛО!.
  4. Функция ЭФФЕКТ использует для расчетов формулу, которая может быть записана в Excel в виде: =СТЕПЕНЬ(1+(A1/A2);A2)-1, где:
  • A1 – номинальная годовая ставка;
  • A2 – число периодов, в которые происходит начисление сложных процентов.
  • Для понимания термина «сложные проценты» рассмотрим пример. Владелец капитала предоставляет денежные средства в долг и планирует получить прибыль, величина которой зависит от следующих факторов: сумма средств, которая предоставляется в долг; длительность периода кредитования (использования предоставленных средств); начисляемые проценты за использование.
  • Проценты могут начисляться различными способами: базовая сумма остается неизменной (простые проценты) и база изменяется при наступлении каждого последующего периода выплат (сложные). При использовании сложных процентов сумма задолженности (прибыли) увеличивается быстрее при одинаковых сумме и периоде кредитования, в сравнении с применением простых процентов (особенно, если периодов начисления процентов (капитализации) достаточно много.
  • Для получения результата в формате процентов необходимо установить соответствующий формат данных в ячейке, в которой будет введена функция ЭФФЕКТ.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector