Формулу сложных процентов для определения денежной суммы

Люди во все времена думали о своем завтрашнем дне. Они старались и стараются обезопасить от финансовых невзгод и себя, и своих детей и внуков, строя хотя бы небольшой островок уверенности в будущем. Начиная строить его уже сейчас с помощью небольших банковских вкладов, можно обеспечить себе в дальнейшем стабильность и независимость.

Основным принципом банковских операций является то, что денежные средства способны увеличиваться лишь тогда, когда находятся в постоянном обороте. Чтобы клиентам уверенно ориентироваться в сфере финансовых услуг и уметь правильно подбирать условия, выгодные им в определенный промежуток времени, необходимо знать ряд простых правил. В данной статье речь пойдет о долгосрочных вложениях, которые позволяют за определенное количество лет из относительно небольшой суммы начального капитала получить существенную прибыль или использовать вклад дальше, снимая начисления для повседневных нужд.

Для правильного расчета прибыли необходимо выполнить несложные арифметические действия на основе нижеизложенных формул.

Формула сложного процента (расчет в годах)

Например, вы решили положить 100000,00 руб. под 11% годовых, чтобы через 10 лет воспользоваться сбережениями, которые значительно выросли в результате капитализации. Для расчета итоговой суммы следует применить методику расчета сложного процента.

Для расчета сложного процента применяем простую формулу:

  • S – общая сумма («тело» вклада + проценты), причитающаяся к возврату вкладчику по истечении срока действия вклада;
  • Р – первоначальная величина вклада;
  • n — общее количество операций по капитализации процентов за весь срок привлечения денежных средств (в данном случае оно соответствует количеству лет);
  • I – годовая процентная ставка.

Подставив значения в эту формулу, мы видим, что:

через 5 лет сумма будет равняться руб.,

а через 10 лет она составит руб.

Если бы мы рассчитывали капитализацию процентов по вкладу за короткий период, то сложный процент было бы удобнее рассчитывать по формуле

  • К – количество дней в текущем году,
  • J – количество дней в периоде, по итогам которого банком производится капитализация начисленных процентов (остальные обозначения – как и в предыдущей формуле).

Но тем, кому удобнее ежемесячно снимать проценты по вкладу, лучше ознакомиться с понятием «капитализация вклада», подразумевающим начисление простых процентов.

На графике показано как вырастет капитал при капитализации процентов по вкладу, если вложить 100000,00 руб. на 10 лет под 10%, 15% и 20%

Формула сложного процента (расчет в месяцах)

Существует и другой, более выгодный для клиента метод начисления и прибавления процентной ставки – ежемесячный. Для этого применяется следующая формула:

где n также соответствует количеству операций по капитализации, но уже выражается в месяцах. Процентный показатель здесь дополнительно делится на 12 потому что в году 12 месяцев, а у нас появляется необходимость в расчете месячную процентную ставку.

Если бы данная формула использовалась для поквартального начисления вклада, то годовой процент делился бы на 4, а показатель n был бы равен количеству кварталов, а если бы процент начислялся по полугодиям, то процентная ставка делилась бы 2, а обозначение n соответствовало количеству полугодий.

Итак, если бы нами был сделан вклад в сумме 100000,00 руб. с ежемесячной капитализацией процентов, то:

через 5 лет (60 месяцев) сумма вклада выросла бы до 172891,57 руб., что примерно на 10000 руб. больше, чем в случае с ежегодной капитализацией вклада; руб.

Читайте также:  Какой негосударственный пенсионный фонд выбрать отзывы

а через 10 лет (120 месяцев) «наращенная» сумма составила бы 298914,96 руб., что уже на целых 15000 руб. превосходит показатель, рассчитанный по формуле сложного процента, предусматривающей расчет в годах.

руб.

Это означает, что доходность при ежемесячном начислении процентов оказывается больше, чем при начислении один раз в год. И если прибыль не снимать, то сложный процент работает на пользу вкладчика.

График, показывающий разницу роста капитала при расчете в годах и при ежемесячной капитализации процентов

Формула сложного процента для банковских вкладов

Вышеописанные формулы сложного процента – это, скорее всего, наглядные примеры для клиентов, чтобы они могли понять порядок начисления сложных процентов. Эти расчеты несколько проще, чем формула, применяемая банками к реальным банковским вкладам.

Здесь используется такая единица, как коэффициент процентной ставки для вклада (p). Его рассчитывают так:

  • i – процентная ставка по вкладу (вычисляется путем деления размера годовых процентов на 100, например, если годовая ставка 11%, то
  • J – период по итогам которого происходит начисление процентов, выраженный в днях;
  • K – количество дней в году (365 или 366).

Эти данные дают возможность рассчитать процентную ставку для разных периодов вклада.

Сложный процент («наращенная» сумма) для банковских вкладов рассчитывается по следующей формуле:

На ее основе и взяв в качестве примера те же данные, мы рассчитаем сложный процент по банковскому методу.

Для начала определяем коэффициент процентной ставки для вклада:

Теперь подставляем данные в основную формулу:

руб. – это сумма вклада, «выросшая» за 5 лет*;

руб. – за 10 лет*.

*Приведенные в примерах расчеты являются приблизительными, поскольку в них не учтены високосные года и разное количество дней в месяце.

Если сравнивать суммы из этих двух примеров с предыдущими, то они несколько меньше, но все же выгода от капитализации процентов очевидна. Поэтому, если вы твердо решили положить деньги в банк на длительный срок, то предварительный подсчет прибыли лучше делать с помощью «банковской» формулы – это поможет вам избежать разочарований.

Данная тема относится к основам финансовой грамотности и обязательна для изучения при инвестировании, построении капитала или просто для накопления необходимой суммы денег. В финансовой сфере принято отличать принцип расчета простых и сложных процентов. Например, в банковской сфере сложный процент понимается под понятием капитализации. А в инвестициях часто используют слово «реинвестирование».

Что такое сложный процент?

Сложным процентом называют геометрическую прогрессию денежной суммы, при которой начисленные проценты прибыли прибавляются к базовой сумме, в следующем периоде базовая сумма увеличивается и процент начисляется уже на нее. За счет этого эффекта доходность получается выше, чем при простом проценте.

Капитализация или реинвестирование — это суммирование начисляемых процентов с базовой суммой в обозначенный период. В последующем периоде базовая сумма изменяется на эту величину процента, таким образом достигается прогрессивное или лавинообразное увеличение суммы средств. При подсчете по формуле простого процента, базовая сумма всегда остается неизменной.

Вся эта теория для неподготовленного читателя кажется через чур трудоемкой и запутанной. Но мы вас уверяем, ничего сверхсложного в формуле сложного процента и его отличия от простого нет. Сейчас разберем несколько задач и все встанет на свои места.

Примеры расчета простого и сложного процента

Формула простых и сложных процентов на малом периоде имеет незначительную разницу. Рассмотрим примеры.

Простой

Вы положили на обычный депозитный счет 1000 рублей под 10% годовых на 3 года. Через 3 года вы снимаете 1300 рублей. Так работает простой процент.

Сложный

Вы положили на депозитный счет 1000 рублей, но в характеристиках вклада указано «с ежегодной капитализацией процентов». Те же — 10% годовых, срок тот же — 3 года. Через 3 года вы снимаете уже 1331 рубль. За счет эффекта сложного процента вы получили больше на 31 рубль, чем в первом случае.

Читайте также:  Тарифы на домашний интернет сравнение всех операторов

Подробнее о сложном проценте

Простые проценты нам больше не интересны, а формула сложного выглядит так:

Давайте теперь посчитаем на суммах и процентах более приближенных к реальности, чтобы ощутить разницу в полной мере.

Задача №1

  • банковский депозит на сумму 100 тыс. руб.
  • процентная ставка 8% годовых
  • срок 4 года
  • присутствует ежегодная капитализация процентов
  • конечную результирующую сумму (доход + %)

В данном случае происходит ежегодная капитализация процента по вкладу. В некоторых банках также бывает услуга ежемесячной капитализации процентов. Об этом в задаче ниже.

Задача №2

  • банковский депозит на сумму 100 тыс руб.
  • процентная ставка 8% годовых
  • период 4 года
  • ежемесячная капитализация
  • конечную результирующую сумму (доход + %)

В формуле нужно применять ежемесячный процент, для этого 8 разделим на 12 месяцев. Получается 0,67% — это процент за месяц. И обратите внимание, степень теперь равна 48 — это количество месяцев за 4 года. Подставляем его в формулу:

Выводы

При ежемесячной капитализации результирующий доход вкладчика получился больше на 1736 рублей.

Чтобы сложный процент работал, не нужно снимать начисленные проценты, пусть они капитализируются на счете. Тогда вы получите больше выгоды от депозита.

Формула сложного процента на примере реального банковского вклада

Выше мы рассмотрели упрощенные примеры работы сложного процента. На самом деле банки используют немного усложненную формулу.

Ставка процентов представляется как

Формула универсальная и позволяет сделать вычисление для разных типов депозитов. Таким образом, наша основная формула стала чуть-чуть сложнее:

Математическое понятие «геометрическая прогрессия» помогает работать банковскому вкладу с капитализацией гораздо более эффективно, чем без капитализации. Человеческий мозг не всегда может представить разницу или она поначалу ему кажется не существенной. В действительности, на значительных отрезках времени сложный процент начинает играть огромную роль при построении капитала.

Пример расчета сложного процента на большом отрезке времени

Возьмем одновременно 2 примера с простым и сложным процентами, чтобы разница была наглядной. В обоих вариантах начальная базовая сумма будет составлять 10 тыс. руб. на 20 лет под 10% годовых. В столбцах «сложный процент» сумма процентов каждый год будет прибавляться к базовой сумме.

Как мы видим при длительном отрезке капитализация процентов выглядит очень поразительным инструментом! И чем больше период вложений, тем более разительной становится разница. Но давайте рассмотрим еще более впечатляющий пример.

Как поможет сложный процент в построении капитала?

Самый впечатляющий пример работы сложного процента будет ниже.

Представьте, что базовая сумма у вас совсем мизерная — 1000 рублей. Но вы каждый месяц можете откладывать от зарплаты по 1000 рублей.

Теперь прикинем варианты, какие проценты дают доступные средства сохранения и инвестирования денег в год:

  • 5% — государственные облигации, так называемые облигации федерального займа. Это упрощенно, на самом деле суммы может быть побольше.
  • 10% — самый щедрый банковский вклад
  • 15% — смешанный инвестиционный портфель акций и облигаций
  • 20% — такой процент годовых может дать портфель из акций фондовой биржи.

Давайте не будем больше приводить формулы, так как мы уже все подробно рассказали. Теперь просто возьмем итоговые цифры, которые поражают воображение неподготовленного человека.

Как мы видим результаты впечатляющие, суммы растут как снежный ком. Вы все можете проверить по калькулятору или экселю, здесь нет обмана. Вы действительно можете стать миллионером, откладывая всего по 1000 рублей в месяц.

А что если вы сможете откладывать по 10000 рублей? Теперь подрисуйте в таблице везде по нолику и еще раз удивитесь результатам.

Читайте также:  Горячая линия сбербанка телефон бесплатно в оренбурге

Вы можете возразить, что действительно интересные суммы появляются только при 20% годовых. А вкладывать в акции вы, мол, не умеете. В действительности, это не такое сложное занятие. Для этого наш сайт real-investment.ru и создан. Есть очень простые стратегии инвестирования в акции. Вам не понадобится думать, как выбирать акции и каждый день или неделю продавать их или покупать. Тут все почти как с банковским вкладом. Вы просто откладываете деньги покупаете на них каждый месяц одни и те же акции или паи фонда. Это краткая суть стратегии.

Почему в акции инвестировать безопасно? Почему акции непременно будут расти на 20% годовых? Подробная информация о стратегии и ответы на эти вопросы вы получите на нашем вебинаре об индексном инвестировании, а точнее записи этого вебинара.

Вспомогательные формулы

Привожу еще пару вспомогательных формул, которые могут пригодиться при составлении личного финансового плана. Они выражаются из уже написанных выше. Рассмотрим все на примерах задач.

Задача №1

  • у вас есть 60 тыс. рублей
  • вы хотите приумножить их до 250 тыс. рублей
  • у вас есть срок 15 лет
  • под какую процентную ставку нужно вложить деньги?

Ответ равен 10,03 процентам

Задача №2

  • у вас есть 50 тыс. рублей
  • вы хотите приумножить их до 1 млн. рублей
  • вы уверены, что сможете вложить их под 40% годовых
  • сколько потребуется для этого времени в годах?

Заключение

Описанная формула простых и сложных процентов построения капитала активно используется во всем мире, будь то обычное накопление или инвестирование. Профессиональные финансовые советники и богатейшие люди мира одинаково хорошо отзываются и рекомендуют прибегать к сложным процентам для улучшения своего финансового положения.

Как мы увидели, не обязательно иметь крупную сумму в самом начале, главное регулярно откладывать деньги и пользоваться хорошим процентом.

Расчет наращенной суммы при ежемесячном внесении платежа.

Выполняем просьбу пользователя frouzen, который просил написать Финансовый калькулятор. — рассчитывающий наращенную сумму при использовании сложных процентов и довложении средств ежемесячно равными платежами. Начисление процентов предполагается тоже ежемесячное (самый выгодный случай).

Чтобы не отвлекать пользователя от калькулятора, ниже идет сам калькулятор, а немного теории и формул надо смотреть под ним, кому не лень.

Сложные проценты с ежемесячным вложением равной суммы

Формула сложных процентов, начисляемых несколько раз в течении года
, где m в нашем случае равно 12, а n — срок вклада в годах

Это простейший случай при внесении вклада сразу, и без дальнейшего его пополнения.

Теперь займемся более сложным случаем — пополнением вклада одинаковыми платежами ежемесячно.
Заметим, что множитель степени mn не что иное, как число периодов начисления процентов.

Таким образом, для самого первого вклада за несколько лет наращенная сумма будет равна

Для вклада, который был внесен в конце первого месяца, число периодов начисления процентов на один меньше, и формула будет выглядеть так
,
для третьего вклада — так
,
.
и для последнего вклада, то есть внесенного за месяц до окончания срока — так
,

Интересующий нас результат равен сумме всех этих выражений. И эти выражения кое-что роднит — все они члены геометрической прогрессии, в которой первый член равен , а знаменатель прогрессии равен .

Про геометрическую прогрессию смотри Геометрическая прогрессия

Таким образом, искомая сумма по формуле суммы геометрической прогрессии равна

Вот и все на сегодня.

Обновление

По просьбе пользователя добавлена возможность отдельного указания размера первого взноса.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector